Keywords AI
Compare Datadog LLM and Langfuse side by side. Both are tools in the Observability, Prompts & Evals category.
| Category | Observability, Prompts & Evals | Observability, Prompts & Evals |
| Pricing | Enterprise | Open Source |
| Best For | Enterprise teams already using Datadog who want to add LLM monitoring | Teams who want open-source LLM observability they can self-host and customize |
| Website | datadoghq.com | langfuse.com |
| Key Features |
|
|
| Use Cases |
|
|
Datadog's LLM Observability extends its industry-leading APM platform to AI applications. It provides end-to-end tracing from LLM calls to infrastructure metrics, prompt and completion tracking, cost analysis, and quality evaluation—all integrated with Datadog's existing monitoring, logging, and alerting stack. Ideal for enterprises already using Datadog who want unified observability across traditional and AI workloads.
Langfuse is an open-source LLM observability platform that provides tracing, analytics, prompt management, and evaluation for AI applications. It captures detailed traces of LLM calls, supports custom scoring, and integrates with LangChain, LlamaIndex, Vercel AI SDK, and raw API calls. Langfuse can be self-hosted for data privacy or used as a managed cloud service. Its open-source model and generous free tier make it popular with startups and developers.
Tools for monitoring LLM applications in production, managing and versioning prompts, and evaluating model outputs. Includes tracing, logging, cost tracking, prompt engineering platforms, automated evaluation frameworks, and human annotation workflows.
Browse all Observability, Prompts & Evals tools →